3.1783 \(\int \frac{1}{\sqrt{a+\frac{b}{x}} x^{5/2}} \, dx\)

Optimal. Leaf size=52 \[ \frac{a \tanh ^{-1}\left (\frac{\sqrt{b}}{\sqrt{x} \sqrt{a+\frac{b}{x}}}\right )}{b^{3/2}}-\frac{\sqrt{a+\frac{b}{x}}}{b \sqrt{x}} \]

[Out]

-(Sqrt[a + b/x]/(b*Sqrt[x])) + (a*ArcTanh[Sqrt[b]/(Sqrt[a + b/x]*Sqrt[x])])/b^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0260261, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.235, Rules used = {337, 321, 217, 206} \[ \frac{a \tanh ^{-1}\left (\frac{\sqrt{b}}{\sqrt{x} \sqrt{a+\frac{b}{x}}}\right )}{b^{3/2}}-\frac{\sqrt{a+\frac{b}{x}}}{b \sqrt{x}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[a + b/x]*x^(5/2)),x]

[Out]

-(Sqrt[a + b/x]/(b*Sqrt[x])) + (a*ArcTanh[Sqrt[b]/(Sqrt[a + b/x]*Sqrt[x])])/b^(3/2)

Rule 337

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, -Dist[k/c, Subst[
Int[(a + b/(c^n*x^(k*n)))^p/x^(k*(m + 1) + 1), x], x, 1/(c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && ILtQ[n,
 0] && FractionQ[m]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+\frac{b}{x}} x^{5/2}} \, dx &=-\left (2 \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{a+b x^2}} \, dx,x,\frac{1}{\sqrt{x}}\right )\right )\\ &=-\frac{\sqrt{a+\frac{b}{x}}}{b \sqrt{x}}+\frac{a \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\frac{1}{\sqrt{x}}\right )}{b}\\ &=-\frac{\sqrt{a+\frac{b}{x}}}{b \sqrt{x}}+\frac{a \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{1}{\sqrt{a+\frac{b}{x}} \sqrt{x}}\right )}{b}\\ &=-\frac{\sqrt{a+\frac{b}{x}}}{b \sqrt{x}}+\frac{a \tanh ^{-1}\left (\frac{\sqrt{b}}{\sqrt{a+\frac{b}{x}} \sqrt{x}}\right )}{b^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0585977, size = 77, normalized size = 1.48 \[ \frac{a^{3/2} x^{3/2} \sqrt{\frac{b}{a x}+1} \sinh ^{-1}\left (\frac{\sqrt{b}}{\sqrt{a} \sqrt{x}}\right )-\sqrt{b} (a x+b)}{b^{3/2} x^{3/2} \sqrt{a+\frac{b}{x}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[a + b/x]*x^(5/2)),x]

[Out]

(-(Sqrt[b]*(b + a*x)) + a^(3/2)*Sqrt[1 + b/(a*x)]*x^(3/2)*ArcSinh[Sqrt[b]/(Sqrt[a]*Sqrt[x])])/(b^(3/2)*Sqrt[a
+ b/x]*x^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.011, size = 55, normalized size = 1.1 \begin{align*} -{\sqrt{{\frac{ax+b}{x}}} \left ( -{\it Artanh} \left ({\sqrt{ax+b}{\frac{1}{\sqrt{b}}}} \right ) ax+\sqrt{ax+b}\sqrt{b} \right ){\frac{1}{\sqrt{x}}}{b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{ax+b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b/x)^(1/2)/x^(5/2),x)

[Out]

-((a*x+b)/x)^(1/2)*(-arctanh((a*x+b)^(1/2)/b^(1/2))*a*x+(a*x+b)^(1/2)*b^(1/2))/x^(1/2)/b^(3/2)/(a*x+b)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x)^(1/2)/x^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.54058, size = 297, normalized size = 5.71 \begin{align*} \left [\frac{a \sqrt{b} x \log \left (\frac{a x + 2 \, \sqrt{b} \sqrt{x} \sqrt{\frac{a x + b}{x}} + 2 \, b}{x}\right ) - 2 \, b \sqrt{x} \sqrt{\frac{a x + b}{x}}}{2 \, b^{2} x}, -\frac{a \sqrt{-b} x \arctan \left (\frac{\sqrt{-b} \sqrt{x} \sqrt{\frac{a x + b}{x}}}{b}\right ) + b \sqrt{x} \sqrt{\frac{a x + b}{x}}}{b^{2} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x)^(1/2)/x^(5/2),x, algorithm="fricas")

[Out]

[1/2*(a*sqrt(b)*x*log((a*x + 2*sqrt(b)*sqrt(x)*sqrt((a*x + b)/x) + 2*b)/x) - 2*b*sqrt(x)*sqrt((a*x + b)/x))/(b
^2*x), -(a*sqrt(-b)*x*arctan(sqrt(-b)*sqrt(x)*sqrt((a*x + b)/x)/b) + b*sqrt(x)*sqrt((a*x + b)/x))/(b^2*x)]

________________________________________________________________________________________

Sympy [A]  time = 24.6402, size = 44, normalized size = 0.85 \begin{align*} - \frac{\sqrt{a} \sqrt{1 + \frac{b}{a x}}}{b \sqrt{x}} + \frac{a \operatorname{asinh}{\left (\frac{\sqrt{b}}{\sqrt{a} \sqrt{x}} \right )}}{b^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x)**(1/2)/x**(5/2),x)

[Out]

-sqrt(a)*sqrt(1 + b/(a*x))/(b*sqrt(x)) + a*asinh(sqrt(b)/(sqrt(a)*sqrt(x)))/b**(3/2)

________________________________________________________________________________________

Giac [A]  time = 1.23219, size = 59, normalized size = 1.13 \begin{align*} -a{\left (\frac{\arctan \left (\frac{\sqrt{a x + b}}{\sqrt{-b}}\right )}{\sqrt{-b} b} + \frac{\sqrt{a x + b}}{a b x}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b/x)^(1/2)/x^(5/2),x, algorithm="giac")

[Out]

-a*(arctan(sqrt(a*x + b)/sqrt(-b))/(sqrt(-b)*b) + sqrt(a*x + b)/(a*b*x))